A~local limit theorem for the distribution of fractional parts of an exponential function
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 540-547

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Delta=[\alpha,\beta]\subset[0,1]$, $|\Delta|=\beta-\alpha$. Let $\chi(t)$ be the indicator function of $\Delta$. The number of fractional parts of $\{\xi2^x\}$, $x=0,1,\dots,n-1$, belonging to the segment $\Delta$ is $$ N_n(\xi,\Delta)=\sum_{x=0}^n \chi(\{\xi2^x\}). $$ Let $\tau$ be a non-negative integer number. The following result is proved: Theorem. For $n\to\infty$, uniformly in $\tau$, $$ \operatorname{mes}\{\xi:0\le\xi\le 1,\,N_n(\xi,\Delta)=\tau\}= \frac{1}{\sigma\sqrt{2\pi n}}\exp \biggl(-\frac{(\tau-n|\Delta|)^2}{2n\sigma^2}\biggr)+O\biggl(\frac{\sqrt{\ln n}}{n}\biggr). $$
@article{TVP_1978_23_3_a4,
     author = {D. A. Moskvin and A. G. Postnikov},
     title = {A~local limit theorem for the distribution of fractional parts of an exponential function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {540--547},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/}
}
TY  - JOUR
AU  - D. A. Moskvin
AU  - A. G. Postnikov
TI  - A~local limit theorem for the distribution of fractional parts of an exponential function
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 540
EP  - 547
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/
LA  - ru
ID  - TVP_1978_23_3_a4
ER  - 
%0 Journal Article
%A D. A. Moskvin
%A A. G. Postnikov
%T A~local limit theorem for the distribution of fractional parts of an exponential function
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 540-547
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/
%G ru
%F TVP_1978_23_3_a4
D. A. Moskvin; A. G. Postnikov. A~local limit theorem for the distribution of fractional parts of an exponential function. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 540-547. http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/