A local limit theorem for the distribution of fractional parts of an exponential function
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 540-547
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\Delta=[\alpha,\beta]\subset[0,1]$, $|\Delta|=\beta-\alpha$. Let $\chi(t)$ be the indicator function of $\Delta$. The number of fractional parts of $\{\xi2^x\}$, $x=0,1,\dots,n-1$, belonging to the segment $\Delta$ is $$ N_n(\xi,\Delta)=\sum_{x=0}^n \chi(\{\xi2^x\}). $$ Let $\tau$ be a non-negative integer number. The following result is proved: Theorem. For $n\to\infty$, uniformly in $\tau$, $$ \operatorname{mes}\{\xi:0\le\xi\le 1,\,N_n(\xi,\Delta)=\tau\}= \frac{1}{\sigma\sqrt{2\pi n}}\exp \biggl(-\frac{(\tau-n|\Delta|)^2}{2n\sigma^2}\biggr)+O\biggl(\frac{\sqrt{\ln n}}{n}\biggr). $$
@article{TVP_1978_23_3_a4,
author = {D. A. Moskvin and A. G. Postnikov},
title = {A~local limit theorem for the distribution of fractional parts of an exponential function},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {540--547},
year = {1978},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/}
}
TY - JOUR AU - D. A. Moskvin AU - A. G. Postnikov TI - A local limit theorem for the distribution of fractional parts of an exponential function JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 540 EP - 547 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/ LA - ru ID - TVP_1978_23_3_a4 ER -
D. A. Moskvin; A. G. Postnikov. A local limit theorem for the distribution of fractional parts of an exponential function. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 540-547. http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a4/