On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 673-676
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a random vector be observed with distribution function $F(x;\theta)$, parameter $\theta$ being unknown.
It is shown that the method of L. N. Bol'šev and E. A. Loginov [1] of finding interval estimates for a characteristic $\varphi(\theta)$ can be applied if $\varphi(\theta)$ and $F(x;\theta)$ are monotone in $\theta$.
@article{TVP_1978_23_3_a20,
author = {G. D. Karta\v{s}ov and N. M. \v{C}iganova},
title = {On finding interval estimates by the method of {L.\,N.~Bol'\v{s}ev} and {E.\,A.~Loginov}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {673--676},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/}
}
TY - JOUR
AU - G. D. Kartašov
AU - N. M. Čiganova
TI - On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov
JO - Teoriâ veroâtnostej i ee primeneniâ
PY - 1978
SP - 673
EP - 676
VL - 23
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/
LA - ru
ID - TVP_1978_23_3_a20
ER -
%0 Journal Article
%A G. D. Kartašov
%A N. M. Čiganova
%T On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 673-676
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/
%G ru
%F TVP_1978_23_3_a20
G. D. Kartašov; N. M. Čiganova. On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 673-676. http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/