On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 673-676

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a random vector be observed with distribution function $F(x;\theta)$, parameter $\theta$ being unknown. It is shown that the method of L. N. Bol'šev and E. A. Loginov [1] of finding interval estimates for a characteristic $\varphi(\theta)$ can be applied if $\varphi(\theta)$ and $F(x;\theta)$ are monotone in $\theta$.
@article{TVP_1978_23_3_a20,
     author = {G. D. Karta\v{s}ov and N. M. \v{C}iganova},
     title = {On finding interval estimates by the method of {L.\,N.~Bol'\v{s}ev} and {E.\,A.~Loginov}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {673--676},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/}
}
TY  - JOUR
AU  - G. D. Kartašov
AU  - N. M. Čiganova
TI  - On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 673
EP  - 676
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/
LA  - ru
ID  - TVP_1978_23_3_a20
ER  - 
%0 Journal Article
%A G. D. Kartašov
%A N. M. Čiganova
%T On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 673-676
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/
%G ru
%F TVP_1978_23_3_a20
G. D. Kartašov; N. M. Čiganova. On finding interval estimates by the method of L.\,N.~Bol'\v{s}ev and E.\,A.~Loginov. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 673-676. http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/