On finding interval estimates by the method of L. N. Bol'šev and E. A. Loginov
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 673-676
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a random vector be observed with distribution function $F(x;\theta)$, parameter $\theta$ being unknown. It is shown that the method of L. N. Bol'šev and E. A. Loginov [1] of finding interval estimates for a characteristic $\varphi(\theta)$ can be applied if $\varphi(\theta)$ and $F(x;\theta)$ are monotone in $\theta$.
@article{TVP_1978_23_3_a20,
author = {G. D. Karta\v{s}ov and N. M. \v{C}iganova},
title = {On finding interval estimates by the method of {L.} {N.~Bol'\v{s}ev} and {E.} {A.~Loginov}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {673--676},
year = {1978},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/}
}
TY - JOUR AU - G. D. Kartašov AU - N. M. Čiganova TI - On finding interval estimates by the method of L. N. Bol'šev and E. A. Loginov JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 673 EP - 676 VL - 23 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/ LA - ru ID - TVP_1978_23_3_a20 ER -
G. D. Kartašov; N. M. Čiganova. On finding interval estimates by the method of L. N. Bol'šev and E. A. Loginov. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 3, pp. 673-676. http://geodesic.mathdoc.fr/item/TVP_1978_23_3_a20/