A~sharpened form of the inequality for the concentration function
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 376-379

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of the additive number theory the following sharpened form of Kesten's theorem for the concentration function is obtained. Let $X_1,\dots,X_n$ be independent random variables, $$ S_n=X_1+\dots+X_n,\ Q(X,\lambda)=\sup_x\mathbf P(x\le X\le x+\lambda). $$ Let $\lambda_j$, $1\le j\le n$, be any positive numbers such that $\lambda_j\ge 2\lambda$. Then $$ Q(S_n,\lambda)\ll4\lambda\biggl[\sum_{j=1}^n\lambda_j^2(1-Q(X_j,\lambda_j))Q^{-2}(X_j,\lambda)\biggr]^{-1/2}. $$
@article{TVP_1978_23_2_a9,
     author = {L. P. Postnikova and A. A. Yudin},
     title = {A~sharpened form of the inequality for the concentration function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {376--379},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/}
}
TY  - JOUR
AU  - L. P. Postnikova
AU  - A. A. Yudin
TI  - A~sharpened form of the inequality for the concentration function
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 376
EP  - 379
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/
LA  - ru
ID  - TVP_1978_23_2_a9
ER  - 
%0 Journal Article
%A L. P. Postnikova
%A A. A. Yudin
%T A~sharpened form of the inequality for the concentration function
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 376-379
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/
%G ru
%F TVP_1978_23_2_a9
L. P. Postnikova; A. A. Yudin. A~sharpened form of the inequality for the concentration function. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 376-379. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/