A~sharpened form of the inequality for the concentration function
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 376-379
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By means of the additive number theory the following sharpened form of Kesten's theorem for the concentration function is obtained.
Let $X_1,\dots,X_n$ be independent random variables,
$$
S_n=X_1+\dots+X_n,\ Q(X,\lambda)=\sup_x\mathbf P(x\le X\le x+\lambda).
$$
Let $\lambda_j$, $1\le j\le n$, be any positive numbers such that $\lambda_j\ge 2\lambda$. Then
$$
Q(S_n,\lambda)\ll4\lambda\biggl[\sum_{j=1}^n\lambda_j^2(1-Q(X_j,\lambda_j))Q^{-2}(X_j,\lambda)\biggr]^{-1/2}.
$$
            
            
            
          
        
      @article{TVP_1978_23_2_a9,
     author = {L. P. Postnikova and A. A. Yudin},
     title = {A~sharpened form of the inequality for the concentration function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {376--379},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/}
}
                      
                      
                    TY - JOUR AU - L. P. Postnikova AU - A. A. Yudin TI - A~sharpened form of the inequality for the concentration function JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 376 EP - 379 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/ LA - ru ID - TVP_1978_23_2_a9 ER -
L. P. Postnikova; A. A. Yudin. A~sharpened form of the inequality for the concentration function. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 376-379. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a9/
