On the central limit theorem for Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 295-312 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let, for each $n=1,2,\dots$, random variables $X_{ns}$, $1\le s\le n$, form a (non-homogeneous) Markov chain, $\mathbf EX_{ns}=0$. Let $\mathscr B_{ns}$ be the $\sigma$-algebra generated by $X_{ns}$ and $\beta_{nt}$ be the maximal correlation coefficient between $\mathscr B_{nt}$ and $\mathscr B_{n,t+1}$. Denote \begin{gather*} S_n=\sum_sX_{ns},\quad F_n(x)=\mathbf P\{S_n<x\sqrt{\mathbf DS_n}\},\\ F_{ns}(x)=\mathbf\{X_{ns}<x\},\quad\beta_n=\max_t\beta_{nt}. \end{gather*} Theorem 3. {\it If $0 and, for each $r>0$, $$ \frac{1}{n(1-\beta_n)^2}\sum_s\int_{|y|>y\sqrt n(1-\beta_n)^{3/2}}y^2F_{ns}(dy)\to 0,\ n\to\infty, $$ then $F_n(x)$ converges to the standard normal distribution function.} We also consider (in Theorem 9) the case of a stationary Markov chain under condition $\beta_n=1$ ($n=1,2,\dots$).
@article{TVP_1978_23_2_a4,
     author = {{\CYRV}. A. Lif\v{s}ic},
     title = {On the central limit theorem for {Markov} chains},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {295--312},
     year = {1978},
     volume = {23},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a4/}
}
TY  - JOUR
AU  - В. A. Lifšic
TI  - On the central limit theorem for Markov chains
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 295
EP  - 312
VL  - 23
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a4/
LA  - ru
ID  - TVP_1978_23_2_a4
ER  - 
%0 Journal Article
%A В. A. Lifšic
%T On the central limit theorem for Markov chains
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 295-312
%V 23
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a4/
%G ru
%F TVP_1978_23_2_a4
В. A. Lifšic. On the central limit theorem for Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 295-312. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a4/