On the central limit theorem for Markov chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 295-312
Cet article a éte moissonné depuis la source Math-Net.Ru
Let, for each $n=1,2,\dots$, random variables $X_{ns}$, $1\le s\le n$, form a (non-homogeneous) Markov chain, $\mathbf EX_{ns}=0$. Let $\mathscr B_{ns}$ be the $\sigma$-algebra generated by $X_{ns}$ and $\beta_{nt}$ be the maximal correlation coefficient between $\mathscr B_{nt}$ and $\mathscr B_{n,t+1}$. Denote \begin{gather*} S_n=\sum_sX_{ns},\quad F_n(x)=\mathbf P\{S_n<x\sqrt{\mathbf DS_n}\},\\ F_{ns}(x)=\mathbf\{X_{ns}<x\},\quad\beta_n=\max_t\beta_{nt}. \end{gather*} Theorem 3. {\it If $0 and, for each $r>0$, $$ \frac{1}{n(1-\beta_n)^2}\sum_s\int_{|y|>y\sqrt n(1-\beta_n)^{3/2}}y^2F_{ns}(dy)\to 0,\ n\to\infty, $$ then $F_n(x)$ converges to the standard normal distribution function.} We also consider (in Theorem 9) the case of a stationary Markov chain under condition $\beta_n=1$ ($n=1,2,\dots$).
@article{TVP_1978_23_2_a4,
author = {{\CYRV}. A. Lif\v{s}ic},
title = {On the central limit theorem for {Markov} chains},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {295--312},
year = {1978},
volume = {23},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a4/}
}
В. A. Lifšic. On the central limit theorem for Markov chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 295-312. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a4/