On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 438-445

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with a sequence of series of trials forming a simple homogeneous Markov chain with transition probabilities $$ \pi_{ij}=\frac{1}{k}+\frac{\alpha{ij}}{k\varphi(k)}. $$ Here $k$ is the number of states, $\varphi(k)\to\infty$ as $k\to\infty$, $\displaystyle\max_{1\le i,j\le k}|\alpha_{ij}|=O(1)$. Limit distributions of $\displaystyle\rho=\max_{1\le i\le k}h_i$ as $n$ and $k\to\infty$ are investigated, where $h_i$ is the frequency of the $i$th state in $n$ trials.
@article{TVP_1978_23_2_a22,
     author = {A. S. Ambrosimov},
     title = {On the asymptotical behaviour of the maximum in a~simple homogeneous {Markov} chain with large number of states},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {438--445},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/}
}
TY  - JOUR
AU  - A. S. Ambrosimov
TI  - On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 438
EP  - 445
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/
LA  - ru
ID  - TVP_1978_23_2_a22
ER  - 
%0 Journal Article
%A A. S. Ambrosimov
%T On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 438-445
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/
%G ru
%F TVP_1978_23_2_a22
A. S. Ambrosimov. On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 438-445. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/