On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 438-445
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with a sequence of series of trials forming a simple homogeneous Markov chain with transition probabilities
$$
\pi_{ij}=\frac{1}{k}+\frac{\alpha{ij}}{k\varphi(k)}.
$$
Here $k$ is the number of states, $\varphi(k)\to\infty$ as $k\to\infty$, $\displaystyle\max_{1\le i,j\le k}|\alpha_{ij}|=O(1)$. Limit distributions of $\displaystyle\rho=\max_{1\le i\le k}h_i$ as $n$ and $k\to\infty$ are investigated, where $h_i$ is the frequency of the $i$th state in $n$ trials.
@article{TVP_1978_23_2_a22,
author = {A. S. Ambrosimov},
title = {On the asymptotical behaviour of the maximum in a~simple homogeneous {Markov} chain with large number of states},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {438--445},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {1978},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/}
}
TY - JOUR AU - A. S. Ambrosimov TI - On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 438 EP - 445 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/ LA - ru ID - TVP_1978_23_2_a22 ER -
%0 Journal Article %A A. S. Ambrosimov %T On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states %J Teoriâ veroâtnostej i ee primeneniâ %D 1978 %P 438-445 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/ %G ru %F TVP_1978_23_2_a22
A. S. Ambrosimov. On the asymptotical behaviour of the maximum in a~simple homogeneous Markov chain with large number of states. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 438-445. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a22/