A method of second order accuracy integration of stochastic differential equations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 414-419
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the stochastic differential equation
$$
dX=a(t,X)\,dt+\sigma(t,X)\,dw,\qquad X(t_0)=x,\ t_0\le t\le t_0+T,
$$
the problem of approximate calculation of the expectation $\mathbf Mf(X_{t_0,x}(t_0+T))$ is considered.
Rather a simple method is proposed for recursive modeling of random variables
$$
\overline X_{t_0,x}(t_k);\quad k=0,1,\dots;\quad t_k=t_0+kh;\quad h=\frac{T}{m};
$$
such that
$$
\mathbf Mf(X_{t_0,x}(t_0+T))=\mathbf Mf(\overline X_{t_0,x}(t_0+T))+O(h^2).
$$
            
            
            
          
        
      @article{TVP_1978_23_2_a17,
     author = {G. N. Mil'\v{s}teǐn},
     title = {A method of second order accuracy integration of stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {414--419},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/}
}
                      
                      
                    TY - JOUR AU - G. N. Mil'šteǐn TI - A method of second order accuracy integration of stochastic differential equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 414 EP - 419 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/ LA - ru ID - TVP_1978_23_2_a17 ER -
G. N. Mil'šteǐn. A method of second order accuracy integration of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 414-419. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/
