A method of second order accuracy integration of stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 414-419

Voir la notice de l'article provenant de la source Math-Net.Ru

For the stochastic differential equation $$ dX=a(t,X)\,dt+\sigma(t,X)\,dw,\qquad X(t_0)=x,\ t_0\le t\le t_0+T, $$ the problem of approximate calculation of the expectation $\mathbf Mf(X_{t_0,x}(t_0+T))$ is considered. Rather a simple method is proposed for recursive modeling of random variables $$ \overline X_{t_0,x}(t_k);\quad k=0,1,\dots;\quad t_k=t_0+kh;\quad h=\frac{T}{m}; $$ such that $$ \mathbf Mf(X_{t_0,x}(t_0+T))=\mathbf Mf(\overline X_{t_0,x}(t_0+T))+O(h^2). $$
@article{TVP_1978_23_2_a17,
     author = {G. N. Mil'\v{s}teǐn},
     title = {A method of second order accuracy integration of stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {414--419},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/}
}
TY  - JOUR
AU  - G. N. Mil'šteǐn
TI  - A method of second order accuracy integration of stochastic differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 414
EP  - 419
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/
LA  - ru
ID  - TVP_1978_23_2_a17
ER  - 
%0 Journal Article
%A G. N. Mil'šteǐn
%T A method of second order accuracy integration of stochastic differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 414-419
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/
%G ru
%F TVP_1978_23_2_a17
G. N. Mil'šteǐn. A method of second order accuracy integration of stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 414-419. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a17/