Recurrent interpolation of partially observed random fields with discrete parameter
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 408-413
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem of estimating an unobserved component of a partially observed random field is considered. It is assumed that the unobserved and observed components are governed by certain linear difference equations with random Gaussian right-hand sides. A linear recurrent equation with boundary conditions is derived for the optimal mean-square estimator of the unobserved random field.
			
            
            
            
          
        
      @article{TVP_1978_23_2_a16,
     author = {A. A. Novikov},
     title = {Recurrent interpolation of partially observed random fields with discrete parameter},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {408--413},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a16/}
}
                      
                      
                    TY - JOUR AU - A. A. Novikov TI - Recurrent interpolation of partially observed random fields with discrete parameter JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 408 EP - 413 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a16/ LA - ru ID - TVP_1978_23_2_a16 ER -
A. A. Novikov. Recurrent interpolation of partially observed random fields with discrete parameter. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 408-413. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a16/
