Linear and almost linear functions on a~measurable Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 397-402

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a separable Hilbert space, $\mathfrak B$ be the Borel $\sigma$-algebra in $X$, and ($\mu$ be a probability measure on $\mathfrak B$. A function $\varphi(x)$ is called a $\mu$-measurable linear function if it is the limit in $\mu$ of a sequence of continuous linear functions. A function $\varphi(x)$ is called an almost linear function, if it is $\mathfrak B$-measurable and there exists a linear $\mathfrak B$-measurable manifold $L\subset X$ such that $\mu(L)=1$ and $\varphi(x)$ is linear on $L$. We investigate the class of all linear functions and (in the case of quasiinvariant measure) the class of all almost linear functions.
@article{TVP_1978_23_2_a14,
     author = {A. V. Skorohod},
     title = {Linear and almost linear functions on a~measurable {Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {397--402},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a14/}
}
TY  - JOUR
AU  - A. V. Skorohod
TI  - Linear and almost linear functions on a~measurable Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 397
EP  - 402
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a14/
LA  - ru
ID  - TVP_1978_23_2_a14
ER  - 
%0 Journal Article
%A A. V. Skorohod
%T Linear and almost linear functions on a~measurable Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 397-402
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a14/
%G ru
%F TVP_1978_23_2_a14
A. V. Skorohod. Linear and almost linear functions on a~measurable Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 397-402. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a14/