A~note on asymptotic estimation of the extremum point of a~regression function
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 383-388
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the present paper, it is shown that some modification of the Kiefer–Wolfowitz procedure converges to a minimum point of the regression function $f(x)$ for any rate of its growth as $|x|\to\infty$.
			
            
            
            
          
        
      @article{TVP_1978_23_2_a11,
     author = {M. B. Nevel'son},
     title = {A~note on asymptotic estimation of the extremum point of a~regression function},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {383--388},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a11/}
}
                      
                      
                    TY - JOUR AU - M. B. Nevel'son TI - A~note on asymptotic estimation of the extremum point of a~regression function JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 383 EP - 388 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a11/ LA - ru ID - TVP_1978_23_2_a11 ER -
M. B. Nevel'son. A~note on asymptotic estimation of the extremum point of a~regression function. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 2, pp. 383-388. http://geodesic.mathdoc.fr/item/TVP_1978_23_2_a11/
