A sequential test for two simple hypotheses about the mean of a~Wiener process with delayed observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 204-209

Voir la notice de l'article provenant de la source Math-Net.Ru

The estimation problem of an unknown random parameter $\theta=\theta(\omega)$ is studied in the case when $\theta$ takes values 1 and 0 with probabilities $\pi_0$, $1-\pi_0$, respectively, and the observed process is $$ \xi_t(\omega)=r\theta(\omega)t+\sigma W_t(\omega),\qquad\sigma>0,\qquad r\ne 0,\qquad t\ge 0, $$ where $W$ is a standard Wiener process. Denote by $\tau=\tau(\omega)$ a Markov time with respect to the family of $\sigma$-algebras $\mathscr F_{\tau}^{\xi}=\sigma\{\xi_s,\,s\le t\}$, and by $d=d(\omega)$ a decision function which is $\mathscr F_{\tau+m}^{\xi}$-measurable, where $m\ge 0$ is the delay time. We find a pair $(\tau,d)$ which minimizes $$ \mathbf M[c\tau+a\chi_{(d=0,\theta=1)}+b\chi_{(d=1,\theta=0)}], $$ where $a$, $b$, $c$ are positive constants, $\chi_A$ is the characterictic function of a set $A$ .
@article{TVP_1978_23_1_a21,
     author = {T. P. Miro\v{s}ni\v{c}enko},
     title = {A sequential test for two simple hypotheses about the mean of {a~Wiener} process with delayed observations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {204--209},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/}
}
TY  - JOUR
AU  - T. P. Mirošničenko
TI  - A sequential test for two simple hypotheses about the mean of a~Wiener process with delayed observations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 204
EP  - 209
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/
LA  - ru
ID  - TVP_1978_23_1_a21
ER  - 
%0 Journal Article
%A T. P. Mirošničenko
%T A sequential test for two simple hypotheses about the mean of a~Wiener process with delayed observations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 204-209
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/
%G ru
%F TVP_1978_23_1_a21
T. P. Mirošničenko. A sequential test for two simple hypotheses about the mean of a~Wiener process with delayed observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 204-209. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/