A sequential test for two simple hypotheses about the mean of a Wiener process with delayed observations
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 204-209
Cet article a éte moissonné depuis la source Math-Net.Ru
The estimation problem of an unknown random parameter $\theta=\theta(\omega)$ is studied in the case when $\theta$ takes values 1 and 0 with probabilities $\pi_0$, $1-\pi_0$, respectively, and the observed process is $$ \xi_t(\omega)=r\theta(\omega)t+\sigma W_t(\omega),\qquad\sigma>0,\qquad r\ne 0,\qquad t\ge 0, $$ where $W$ is a standard Wiener process. Denote by $\tau=\tau(\omega)$ a Markov time with respect to the family of $\sigma$-algebras $\mathscr F_{\tau}^{\xi}=\sigma\{\xi_s,\,s\le t\}$, and by $d=d(\omega)$ a decision function which is $\mathscr F_{\tau+m}^{\xi}$-measurable, where $m\ge 0$ is the delay time. We find a pair $(\tau,d)$ which minimizes $$ \mathbf M[c\tau+a\chi_{(d=0,\theta=1)}+b\chi_{(d=1,\theta=0)}], $$ where $a$, $b$, $c$ are positive constants, $\chi_A$ is the characterictic function of a set $A$ .
@article{TVP_1978_23_1_a21,
author = {T. P. Miro\v{s}ni\v{c}enko},
title = {A sequential test for two simple hypotheses about the mean of {a~Wiener} process with delayed observations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {204--209},
year = {1978},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/}
}
TY - JOUR AU - T. P. Mirošničenko TI - A sequential test for two simple hypotheses about the mean of a Wiener process with delayed observations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1978 SP - 204 EP - 209 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/ LA - ru ID - TVP_1978_23_1_a21 ER -
T. P. Mirošničenko. A sequential test for two simple hypotheses about the mean of a Wiener process with delayed observations. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 204-209. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a21/