A~limit theorem for a~queueing system
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 190-195

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system which consists of two identical and independently working devices and two repair shops. The failure occurs when both the devices are out of order. Under the condition of «quick» repair (1) the failures' point process is proved to be asymptotically Poisson.
@article{TVP_1978_23_1_a18,
     author = {V. V. Kozlov},
     title = {A~limit theorem for a~queueing system},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {190--195},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a18/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - A~limit theorem for a~queueing system
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 190
EP  - 195
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a18/
LA  - ru
ID  - TVP_1978_23_1_a18
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T A~limit theorem for a~queueing system
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 190-195
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a18/
%G ru
%F TVP_1978_23_1_a18
V. V. Kozlov. A~limit theorem for a~queueing system. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 190-195. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a18/