The central limit theorem for the number of level crossings of a~stationary Gaussian process
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 185-189

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $r(t)$ be the covariance function of a stationary Gaussian process with zero mean. If $$ \int_0^{\infty}t(|r(t)|+|r'(t)|+|r''(t)|)\,dt\infty, $$ then the central limit theorem for the number of level crossings in a large interval is proved to hold.
@article{TVP_1978_23_1_a17,
     author = {V. I. Piterbarg},
     title = {The central limit theorem for the number of level crossings of a~stationary {Gaussian} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {185--189},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {1978},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a17/}
}
TY  - JOUR
AU  - V. I. Piterbarg
TI  - The central limit theorem for the number of level crossings of a~stationary Gaussian process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1978
SP  - 185
EP  - 189
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a17/
LA  - ru
ID  - TVP_1978_23_1_a17
ER  - 
%0 Journal Article
%A V. I. Piterbarg
%T The central limit theorem for the number of level crossings of a~stationary Gaussian process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1978
%P 185-189
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a17/
%G ru
%F TVP_1978_23_1_a17
V. I. Piterbarg. The central limit theorem for the number of level crossings of a~stationary Gaussian process. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 185-189. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a17/