The recurrency of oscillating random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 161-169
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Y=\{y_n\}_{n=0}^{\infty}$ be an oscillating random walk ([1]): $$ y_0=0,\qquad y_{n+1}-y_n= \begin{cases} \xi'_{n+1},&y_n\le 0,\\ \xi''_{n+1},&y_n>0, \end{cases} \qquad(n=1,2,\dots), $$ $\{\xi'_n\}_{n=1}^{\infty}$ and $\{\xi''_n\}_{n=1}^{\infty}$ be two sequences of independent identically distributed, in each sequence, random variables with values in the set $\{0,\pm 1,\pm 2,\dots\}$, \begin{gather*} S'_0=S''_0=0,\\ S'_n=\sum_{k=1}^n\xi'_k,\qquad S''_n=\sum_{k=1}^n\xi''_k,\qquad n=1,2,\dots \end{gather*} The random walks $S'_n=\{S'_n\}_{n=0}^{\infty}$ and $S''_n=\{S''_n\}_{n=0}^{\infty}$ are aperiodic. It is shown that $Y$ can be transient in the case $\mathbf M\xi'_1=\mathbf M\xi''_1=0$. A recurrency condition for $Y$ is obtained when $S'$ and $S''$ are stable random walks.
@article{TVP_1978_23_1_a14,
author = {B. A. Rogozin and S. G. Foss},
title = {The recurrency of oscillating random walks},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {161--169},
year = {1978},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a14/}
}
B. A. Rogozin; S. G. Foss. The recurrency of oscillating random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 23 (1978) no. 1, pp. 161-169. http://geodesic.mathdoc.fr/item/TVP_1978_23_1_a14/