Construction of a regular split process
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 791-812
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we develop the approach to the general theory of Markov processes proposed in [4]. Let $x_t$ be an (inhomogeneous) Markov process. The right regularization $x_{t+}$ and the left regularization $x_{t-}$ of the process $x_t$ are constructed. They have the following properties. Let $t$ be a real number and $A$ be an event belonging to the «future» $\mathscr F_{>t}$. Then, almost surely, the function $\mathbf P_{t+,x_{t+}}(A)$ is the right-continuous modification of $\mathbf P_{t-,x_{t-}}(A)$ and $\mathbf P_{t-,x_{t-}}(A)$ is the left-continuous modification of $\mathbf P_{t+,x_{t+}}(A)$, where $\mathbf P_{s+,x}$ (resp. $\mathbf P_{s-,x}$) are the transition probabilities of $x_{t+}$ (resp. $x_{t-}$).
@article{TVP_1977_22_4_a9,
author = {S. E. Kuznecov},
title = {Construction of a~regular split process},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {791--812},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a9/}
}
S. E. Kuznecov. Construction of a regular split process. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 791-812. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a9/