Construction of a~regular split process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 791-812
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we develop the approach to the general theory of Markov processes proposed in [4]. Let $x_t$ be an (inhomogeneous) Markov process. The right regularization $x_{t+}$ and the left regularization $x_{t-}$ of the process $x_t$ are constructed. They have the following properties. Let $t$ be a real number and $A$ be an event belonging to the «future» $\mathscr F_{>t}$. Then, almost surely, the function $\mathbf P_{t+,x_{t+}}(A)$ is the right-continuous modification of $\mathbf P_{t-,x_{t-}}(A)$ and $\mathbf P_{t-,x_{t-}}(A)$ is the left-continuous modification of $\mathbf P_{t+,x_{t+}}(A)$, where $\mathbf P_{s+,x}$ (resp. $\mathbf P_{s-,x}$) are the transition probabilities of $x_{t+}$ (resp. $x_{t-}$).
			
            
            
            
          
        
      @article{TVP_1977_22_4_a9,
     author = {S. E. Kuznecov},
     title = {Construction of a~regular split process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {791--812},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a9/}
}
                      
                      
                    S. E. Kuznecov. Construction of a~regular split process. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 791-812. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a9/
