An ergodic theorem for Markov processes. II
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 712-728
Cet article a éte moissonné depuis la source Math-Net.Ru
The main result of [8] is extended to the case of integrable functions. It is also proved that our previous assumption about the existence of a dual process can be omitted if the basic process has the absolutely continuous resolvent. Special attention is paid to ergodic Markov processes.
@article{TVP_1977_22_4_a4,
author = {M. G. \v{S}ur},
title = {An ergodic theorem for {Markov} {processes.~II}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {712--728},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/}
}
M. G. Šur. An ergodic theorem for Markov processes. II. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 712-728. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/