An ergodic theorem for Markov processes.~II
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 712-728

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of [8] is extended to the case of integrable functions. It is also proved that our previous assumption about the existence of a dual process can be omitted if the basic process has the absolutely continuous resolvent. Special attention is paid to ergodic Markov processes.
@article{TVP_1977_22_4_a4,
     author = {M. G. \v{S}ur},
     title = {An ergodic theorem for {Markov} {processes.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {712--728},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/}
}
TY  - JOUR
AU  - M. G. Šur
TI  - An ergodic theorem for Markov processes.~II
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 712
EP  - 728
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/
LA  - ru
ID  - TVP_1977_22_4_a4
ER  - 
%0 Journal Article
%A M. G. Šur
%T An ergodic theorem for Markov processes.~II
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 712-728
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/
%G ru
%F TVP_1977_22_4_a4
M. G. Šur. An ergodic theorem for Markov processes.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 712-728. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/