An ergodic theorem for Markov processes.~II
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 712-728
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main result of [8] is extended to the case of integrable functions. It is also proved that our previous assumption about the existence of a dual process can be omitted if the basic process has the absolutely continuous resolvent. Special attention is paid to ergodic Markov processes.
			
            
            
            
          
        
      @article{TVP_1977_22_4_a4,
     author = {M. G. \v{S}ur},
     title = {An ergodic theorem for {Markov} {processes.~II}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {712--728},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/}
}
                      
                      
                    M. G. Šur. An ergodic theorem for Markov processes.~II. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 712-728. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a4/
