A multidimensional generalization of Esseen's inequality for distribution functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 897-900
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\xi$ and $\eta$ be $s$-dimensional random vectors with distribution functions $F(x)$, $G(x)$ and characteristic functions $f(t)$, $g(t)$ respectively.
Theorem. {\it For arbitrary $T>0$,
$$
\sup_x|F(x)-G(x)|\le 2\biggl[\frac{1}{(2\pi)^s}\int_{-T}^T|\Delta(t)|\,dt+
\sum_{k=1}^{s-1}\frac{1}{(2\pi)^{s-k}}\sum_{i(k)}\int_{-T}^T|\Delta_{i(k)}(t)|\,dt\biggr]+\frac{A}{T}C(s),
$$
where
$$
C(s)=\frac{24\ln 2}{\pi}+\frac{8s^{1/3}}{(2\pi\ln4/3)^{1/3}},\qquad
A=\sup_x\frac{\partial G}{\partial x_1}+\dots+\sup_x\frac{\partial G}{\partial x_s}
$$
and $\Delta(t)$, $\Delta_{i(k)}(t)$ are defined by} (3), $i(k)=\{i_1,\dots,i_k\}$ is an ordered sample from the sequence $(1,\dots,s)$.
            
            
            
          
        
      @article{TVP_1977_22_4_a23,
     author = {N. G. Gamkrelidze},
     title = {A multidimensional generalization of {Esseen's} inequality for distribution functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {897--900},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a23/}
}
                      
                      
                    TY - JOUR AU - N. G. Gamkrelidze TI - A multidimensional generalization of Esseen's inequality for distribution functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 897 EP - 900 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a23/ LA - ru ID - TVP_1977_22_4_a23 ER -
N. G. Gamkrelidze. A multidimensional generalization of Esseen's inequality for distribution functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 897-900. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a23/
