On a~global deviation measure for an estimate of the regression line
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 879-888
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random vectors with values in the Euclidean plane. We prove that the limiting distribution for a properly normalized quadratic functional
$$
\int(r(x)-\hat r_n(x))^2\hat h_n^2(x)p(x)\,dx
$$
is normal $(0,\sigma^2)$, where $r_n(x)$ is an estimate of the regression line $r(x)$ of the form (1). We obtain also the limiting distribution in case of a sequence of «local» alternatives of the form (7). Finally, for the rate of convergence of moments, we have
$$
|\nu_{n,2k}-\nu_{2k}|\le c_1(k,\sigma)n^{-\frac{1}{2}+\delta},\qquad
|\nu_{n,2k+1}|\le c_2(k,\sigma)n^{-\frac{1}{4}+\delta},
$$
where $c_1(k,\sigma)$ and $c_2(k,\sigma)$ are some constants which depend on the order $k$ of the moment and variance $\sigma^2$.
			
            
            
            
          
        
      @article{TVP_1977_22_4_a21,
     author = {V. D. Konakov},
     title = {On a~global deviation measure for an estimate of the regression line},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {879--888},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a21/}
}
                      
                      
                    V. D. Konakov. On a~global deviation measure for an estimate of the regression line. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 879-888. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a21/
