On estimating the drift of a~diffusion process from observations in a~domain
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 871-878
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $x_t$ be a diffusion process in a domain $G$ of a Euclidian space with small diffusion proportional to $\varepsilon$ and drift depending on an unknown parameter $\theta$. In this paper, a lower bound for $\mathbf M_{\theta,x}\|\theta-\theta_1\|^2$ is obtained (see (0.6)), where $\theta_1$ is an arbitrary estimate, of $\theta$, and locally asymptotically minimax estimates are found.
			
            
            
            
          
        
      @article{TVP_1977_22_4_a20,
     author = {I. I. Citovi\v{c}},
     title = {On estimating the drift of a~diffusion process from observations in a~domain},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {871--878},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a20/}
}
                      
                      
                    I. I. Citovič. On estimating the drift of a~diffusion process from observations in a~domain. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 871-878. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a20/
