Some estimates of the convergence rate in stability theorems
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 689-699
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the rate of convergence of the stationary distributions of the waiting time for one-channel queueing systems when the distributions of governing sequences converge. Estimates for the one-dimensional distributions are obtained in terms of Levy's and the uniform metrics. If the governing sequences are given on a common probability space, the estimates obtained in metrics $\rho(\xi,\eta)=\inf\{\varepsilon\colon\mathbf P(|\xi-\eta|>\varepsilon)<\varepsilon\}$ are best possible.
@article{TVP_1977_22_4_a2,
author = {A. A. Borovkov},
title = {Some estimates of the convergence rate in stability theorems},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {689--699},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a2/}
}
A. A. Borovkov. Some estimates of the convergence rate in stability theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 689-699. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a2/