Some estimates of the convergence rate in stability theorems
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 689-699
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the rate of convergence of the stationary distributions of the waiting time for one-channel queueing systems when the distributions of governing sequences converge. Estimates for the one-dimensional distributions are obtained in terms of Levy's and the uniform metrics. If the governing sequences are given on a common probability space, the estimates obtained in metrics $\rho(\xi,\eta)=\inf\{\varepsilon\colon\mathbf P(|\xi-\eta|>\varepsilon)\varepsilon\}$ are best possible.
			
            
            
            
          
        
      @article{TVP_1977_22_4_a2,
     author = {A. A. Borovkov},
     title = {Some estimates of the convergence rate in stability theorems},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {689--699},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a2/}
}
                      
                      
                    A. A. Borovkov. Some estimates of the convergence rate in stability theorems. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 689-699. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a2/
