Asymptotic properties of the extinction probability for a~Markov multiplication process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 845-851
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For sequences $\{\tau_i\}$, $\{\gamma_i\}$ of independent positive random variables the following process is constructed: $Y(0)=x$, $dY/dt=-1$ everywhere except points $t_n=\tau_1+\dots+\tau_n$ where $Y(t_n)=\gamma_n Y(t_n-0)=Y(t_n+0)$. Limit theorems are proved concerning the behaviour of the extinction probability
$$
f(x)=\mathbf P(\inf\{Y(t),t\ge 0\}0),\qquad x\to\infty.
$$
            
            
            
          
        
      @article{TVP_1977_22_4_a15,
     author = {G. \v{S}. Lev},
     title = {Asymptotic properties of the extinction probability for {a~Markov} multiplication process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {845--851},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a15/}
}
                      
                      
                    TY - JOUR AU - G. Š. Lev TI - Asymptotic properties of the extinction probability for a~Markov multiplication process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 845 EP - 851 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a15/ LA - ru ID - TVP_1977_22_4_a15 ER -
G. Š. Lev. Asymptotic properties of the extinction probability for a~Markov multiplication process. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 845-851. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a15/
