On the first exit time out of a semigroup in $R^m$ for a random walk
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 837-844
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $(S_n)$ be a random walk generated by a sequence of random i. i. d. vectors $(\xi_n)$; $\xi_n\in R^m$. Let $H$ be a subset of $R^m$. In this paper, we study the random variable $$ \eta=\eta_H=\min\{k\colon k\ge 1,S_k\notin H\}. $$ Main results are obtained in the case when $H$ is a semi-group. For $|z|<1$ and $\lambda=(\lambda_1,\dots,\lambda_m)\in R^m$, we prove the formula $$ \sum_{n=0}^{\infty}z^n\mathbf M(e^{i(\lambda,S_n)};\eta_H>n)= \exp\biggl\{\sum_{n=1}^{\infty}\frac{z^n}{n}\mathbf M(e^{i(\lambda,S_n)};E_{0,n})\biggr\} $$ where $E_{0,n}$ is the event: $n$ is not a ladder index for any of $n$ cyclical rearrangements of $\xi_1,\dots,\xi_n$. We find some sufficient conditions for the uniqueness of a solution of the equation $$ (1-z\Phi(\lambda))\psi_1(z,\lambda)=\psi_2(z,\lambda) $$ where $\Phi(\lambda)=\mathbf M\exp\{i(\lambda,\xi_1)\}$. Some estimates for the sequence $(\mathbf P(\eta_H>n))$ are also obtained.
@article{TVP_1977_22_4_a14,
author = {A. A. Mogul'skiǐ and E. A. Pe\v{c}erskiǐ},
title = {On the first exit time out of a~semigroup in $R^m$ for a~random walk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {837--844},
year = {1977},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a14/}
}
TY - JOUR AU - A. A. Mogul'skiǐ AU - E. A. Pečerskiǐ TI - On the first exit time out of a semigroup in $R^m$ for a random walk JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 837 EP - 844 VL - 22 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a14/ LA - ru ID - TVP_1977_22_4_a14 ER -
A. A. Mogul'skiǐ; E. A. Pečerskiǐ. On the first exit time out of a semigroup in $R^m$ for a random walk. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 837-844. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a14/