The distribution of Sherman's weighted statistic for contiguous alternatives
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 813-822
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $U_n(1),\dots,U_n(n)$ be the variational series of a simple random sample of size $n$ from the uniform distribution on [0, 1].
In this paper, the asymptotical distribution (as $n\to\infty$) of statistic
$$
\xi_n=\frac{1}{2}\sum_{j=1}^{n+1}a\biggl(\frac{j}{n+1}\biggr)
\biggl|\varphi_n(U_n(j))-\varphi_n(U_n(j-1))-\frac{1}{n+1}\biggr|
$$
is derived, where $a(u)$, $0\le u\le 1$, is a weight function,
$$
\varphi_n(u)=u+\frac{1}{\sqrt{n+1}}\int_0^u b_n(x)\,dx,\qquad\int_0^u b_n(x)\,dx=O(1).
$$ The result obtained is used to construct a goodness-of-fit test.
			
            
            
            
          
        
      @article{TVP_1977_22_4_a10,
     author = {E. M. Kudlaev},
     title = {The distribution of {Sherman's} weighted statistic for contiguous alternatives},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {813--822},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a10/}
}
                      
                      
                    E. M. Kudlaev. The distribution of Sherman's weighted statistic for contiguous alternatives. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 813-822. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a10/
