On approximation of convolutions by normal laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 675-688
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $F_n$ be the distribution of $\xi_1+\dots+\xi_n$, where $\xi_i$ are independent random vectors with values in $R^k$; $G_n$ is the Gaussian distribution in $R^k$ with mean and covariances equal to those of $F_n$. Let $\mathfrak L_{\Pi}(F,G)$ be the Lévy–Prokhorov distance between $k$-dimensional distributions defined according to the norm $|\cdot|$ in $R^k$.
The main result of the paper is the following
Theorem 1.{\it If $|\xi_i-\mathbf E\xi_i|\le\nu$ with probability $1$ and for all $t\in R^k$
$$
\mathbf E(\xi_1+\dots+\xi_n-\mathbf E(\xi_1+\dots+\xi_n),t)^2\le(t,t),
$$
then, for $\nu1$,
$$
\mathfrak L_{\Pi}(F_n,G_n)\le c\nu\biggl(\ln\frac{1}{\nu}\biggr)^3
$$
where the constant $c$ depends on the dimension $k$ and on the choice of the norm $|\cdot|$ but not
on characteristics of $F_n$ or $G_n$.}
			
            
            
            
          
        
      @article{TVP_1977_22_4_a1,
     author = {V. V. Yurinskiǐ},
     title = {On approximation of convolutions by normal laws},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {675--688},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a1/}
}
                      
                      
                    V. V. Yurinskiǐ. On approximation of convolutions by normal laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 4, pp. 675-688. http://geodesic.mathdoc.fr/item/TVP_1977_22_4_a1/
