A limit theorem for solutions of differential equations with random right hand side
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 498-512
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The main purpose of this paper is to weak requirements in a theorem of Has'minski\u i [2].
The asymptotic behaviour of the solution $X_{\varepsilon}(t,\omega)$ of equation (0.1) as $\varepsilon\to 0$ is studied. The main assumptions are the following: conditions (1.1) and (1.2) are fulfilled, the processes $F^{(i)}(x,t,\omega)$ satisfy Kolmogorov's mixing condition (0.4) (for a special type of processes $F^{(i)}$, see condition (4'), Rosenblatt's mixing condition (0.3) is sufficient), limits (1.4) and (1.5) exist. Under these assumptions and some additional ones the process $X_{\varepsilon}(\tau/\varepsilon^2,\omega)$ is proved to converge weakly to a Markov process $X_0(\tau,\omega)$. The local characteristics of $X_0(\tau,\omega)$ are calculated from condition (1.5).
			
            
            
            
          
        
      @article{TVP_1977_22_3_a3,
     author = {A. N. Borodin},
     title = {A limit theorem for solutions of differential equations with random right hand side},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {498--512},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a3/}
}
                      
                      
                    TY - JOUR AU - A. N. Borodin TI - A limit theorem for solutions of differential equations with random right hand side JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 498 EP - 512 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a3/ LA - ru ID - TVP_1977_22_3_a3 ER -
A. N. Borodin. A limit theorem for solutions of differential equations with random right hand side. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 498-512. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a3/
