A critical Galton--Watson branching process with emigration
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 482-497
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the present paper, an example of critical $\varphi$-branching processes introduced in [1] is investigated. For $\varphi(n)=\max\{0,n-1\}$, we derive an asymptotic formula for the probability $\mathbf P\{\mu(t)>0\mid\mu(0)=m\ge 2\}$ as $t\to\infty$. Here $\mu(t)$ is the number of particles at time $t$. We also obtain a conditional limit theorem for this process which is analogous to a well-known result for a critical Galton–Watson process.
			
            
            
            
          
        
      @article{TVP_1977_22_3_a2,
     author = {V. A. Vatutin},
     title = {A critical {Galton--Watson} branching process with emigration},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {482--497},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a2/}
}
                      
                      
                    V. A. Vatutin. A critical Galton--Watson branching process with emigration. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 482-497. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a2/
