A critical Galton–Watson branching process with emigration
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 482-497
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, an example of critical $\varphi$-branching processes introduced in [1] is investigated. For $\varphi(n)=\max\{0,n-1\}$, we derive an asymptotic formula for the probability $\mathbf P\{\mu(t)>0\mid\mu(0)=m\ge 2\}$ as $t\to\infty$. Here $\mu(t)$ is the number of particles at time $t$. We also obtain a conditional limit theorem for this process which is analogous to a well-known result for a critical Galton–Watson process.
@article{TVP_1977_22_3_a2,
author = {V. A. Vatutin},
title = {A critical {Galton{\textendash}Watson} branching process with emigration},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {482--497},
year = {1977},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a2/}
}
V. A. Vatutin. A critical Galton–Watson branching process with emigration. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 482-497. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a2/