Conditions for moments of the number of zeroes of Gaussian stationary processes to be finite
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 631-641
Cet article a éte moissonné depuis la source Math-Net.Ru
We deal with factorial moments $N_m(t)$ of the number of zeroes of a Gaussian stationary process $\xi_{\tau}$, $\mathbf M\xi_{\tau}=0$, $\tau\in[0,t]$. For $\xi_t$ having the property of local non-determinism of order $k$ (Definition 1), necessary and sufficient conditions for moments $N_m(t)$ to be finite are obtained (Theorems 1 and 2). In Theorems 3 and 4 these conditions are simplified for the case $k=1$.
@article{TVP_1977_22_3_a19,
author = {R. N. Miro\v{s}in},
title = {Conditions for moments of the number of zeroes of {Gaussian} stationary processes to be finite},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {631--641},
year = {1977},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a19/}
}
TY - JOUR AU - R. N. Mirošin TI - Conditions for moments of the number of zeroes of Gaussian stationary processes to be finite JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 631 EP - 641 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a19/ LA - ru ID - TVP_1977_22_3_a19 ER -
R. N. Mirošin. Conditions for moments of the number of zeroes of Gaussian stationary processes to be finite. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 631-641. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a19/