A~criterion for convergence of continuous stochastic approximation procedures
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 595-602
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the a.s. convergence of the stochastic approximation procedure
$$
dX_s=\alpha(s)[\triangledown f(X_s)+\varphi(s,X_s)]\,ds+\beta(s)\sigma(s,X_s)\,dW_s
$$
to a maximum point of $f$, the following condition is proved to be necessary and sufficient: for any $\lambda>0$
$$
\int_0^{\infty}\exp(-\lambda\gamma^{-2}(t))\,dt\infty
$$
where $dt=\alpha(s)\,ds$; $\gamma(t)=\beta(t)/\sqrt{\alpha(t)}$.
			
            
            
            
          
        
      @article{TVP_1977_22_3_a14,
     author = {A. P. Korostelev},
     title = {A~criterion for convergence of continuous stochastic approximation procedures},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {595--602},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a14/}
}
                      
                      
                    TY - JOUR AU - A. P. Korostelev TI - A~criterion for convergence of continuous stochastic approximation procedures JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 595 EP - 602 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a14/ LA - ru ID - TVP_1977_22_3_a14 ER -
A. P. Korostelev. A~criterion for convergence of continuous stochastic approximation procedures. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 595-602. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a14/
