Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 590-595

Voir la notice de l'article provenant de la source Math-Net.Ru

For arbitrary random vectors $X$ and $Y$ with values in $R^k$ and for any integer $m\ge 1$, the following inequality is proved: $$ \pi^{m+1}(X,Y)\le c\omega_{m-1}(X,Y). $$ Here $\pi$ is the well-known Lévy–Prohorov metric, $\omega_{m-1}$ is a multidimensional analogue of metrics studied by N. Grigorevski\v i and I. Šiganov [1] and $c$ is a constant depending on $m$ and $k$.
@article{TVP_1977_22_3_a13,
     author = {G. I. Yamukov},
     title = {Estimates for generalized {Dudley's} metrics in spaces of finite-dimensional distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {590--595},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/}
}
TY  - JOUR
AU  - G. I. Yamukov
TI  - Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 590
EP  - 595
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/
LA  - ru
ID  - TVP_1977_22_3_a13
ER  - 
%0 Journal Article
%A G. I. Yamukov
%T Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 590-595
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/
%G ru
%F TVP_1977_22_3_a13
G. I. Yamukov. Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 590-595. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/