Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 590-595
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For arbitrary random vectors $X$ and $Y$ with values in $R^k$ and for any integer $m\ge 1$, the following inequality is proved:
$$
\pi^{m+1}(X,Y)\le c\omega_{m-1}(X,Y).
$$
Here $\pi$ is the well-known Lévy–Prohorov metric, $\omega_{m-1}$ is a multidimensional analogue of metrics studied by N. Grigorevski\v i and I. Šiganov [1] and $c$ is a constant depending on $m$ and $k$.
			
            
            
            
          
        
      @article{TVP_1977_22_3_a13,
     author = {G. I. Yamukov},
     title = {Estimates for generalized {Dudley's} metrics in spaces of finite-dimensional distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {590--595},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/}
}
                      
                      
                    TY - JOUR AU - G. I. Yamukov TI - Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 590 EP - 595 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/ LA - ru ID - TVP_1977_22_3_a13 ER -
G. I. Yamukov. Estimates for generalized Dudley's metrics in spaces of finite-dimensional distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 590-595. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a13/
