Inequalities for the distribution of the length of random vector sums
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 466-481
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Starting from a combinatorial proof of the inequality
$$
\mathbf P(|\xi+\eta|\ge x)\ge\frac{1}{2}\mathbf P^2(|\xi|\ge x).
$$
where $\xi$ and $\eta$ are independent random vectors in a $d$-dimensional Euclidean space, continuous analogues of the combinatorial model are constructed, which enable to deduce inequalities similar to the above.
			
            
            
            
          
        
      @article{TVP_1977_22_3_a1,
     author = {G. {\CYRO}. H. Katona},
     title = {Inequalities for the distribution of the length of random vector sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {466--481},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a1/}
}
                      
                      
                    G. О. H. Katona. Inequalities for the distribution of the length of random vector sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 466-481. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a1/
