Inequalities for the distribution of the length of random vector sums
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 466-481

Voir la notice de l'article provenant de la source Math-Net.Ru

Starting from a combinatorial proof of the inequality $$ \mathbf P(|\xi+\eta|\ge x)\ge\frac{1}{2}\mathbf P^2(|\xi|\ge x). $$ where $\xi$ and $\eta$ are independent random vectors in a $d$-dimensional Euclidean space, continuous analogues of the combinatorial model are constructed, which enable to deduce inequalities similar to the above.
@article{TVP_1977_22_3_a1,
     author = {G. {\CYRO}. H. Katona},
     title = {Inequalities for the distribution of the length of random vector sums},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {466--481},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a1/}
}
TY  - JOUR
AU  - G. О. H. Katona
TI  - Inequalities for the distribution of the length of random vector sums
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 466
EP  - 481
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a1/
LA  - ru
ID  - TVP_1977_22_3_a1
ER  - 
%0 Journal Article
%A G. О. H. Katona
%T Inequalities for the distribution of the length of random vector sums
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 466-481
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a1/
%G ru
%F TVP_1977_22_3_a1
G. О. H. Katona. Inequalities for the distribution of the length of random vector sums. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 466-481. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a1/