Ideal metrics in the problem of approximating the distributions of sums of independent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 449-465
Cet article a éte moissonné depuis la source Math-Net.Ru
In two previous publications [5] and [6], the author introduced special metrics in spaces of probability measures in Banach spaces $U$. These metrics, called ideal, were used in studying approximations of the distributions of sums of independent $U$-valued random variables. In this paper, a number of new general properties of ideal metrics are established and the possibility of using them in the above problems is demonstrated. In particular, a generalization and refinement of a recent result due to V. Paulauskas is given.
@article{TVP_1977_22_3_a0,
author = {V. M. Zolotarev},
title = {Ideal metrics in the problem of approximating the distributions of sums of independent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {449--465},
year = {1977},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a0/}
}
TY - JOUR AU - V. M. Zolotarev TI - Ideal metrics in the problem of approximating the distributions of sums of independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 449 EP - 465 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a0/ LA - ru ID - TVP_1977_22_3_a0 ER -
V. M. Zolotarev. Ideal metrics in the problem of approximating the distributions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 3, pp. 449-465. http://geodesic.mathdoc.fr/item/TVP_1977_22_3_a0/