An extension of the Girsanov theorem on the change of measures to the case of semi-martingales with jumps
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 279-294
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $(\Omega,\mathscr F,\mathbf P)$ be a probability space with an increasing family of $\sigma$-algebras $(\mathscr F_t)$, $t\in R_+$, and let $X=(X_t)$ be a semi-martingale, that is $X_t=A_t+M_t$, $\forall t\in R_+$, where $A_t$ is a process with bounded variation and $M_t$ is a martingale. In the paper, under some conditions, a new measure $\widetilde{\mathbf P}(d\omega)=\zeta(\omega)\mathbf P(d\omega)$ is constructed such that, on the new probability space $(\Omega,\mathscr F,\widetilde{\mathbf P})$ with the same family of $\sigma$-algebras $(\mathscr F_t)$, the process $X$ is a process with independent increments.
@article{TVP_1977_22_2_a5,
author = {L. I. Gal'\v{c}uk},
title = {An extension of the {Girsanov} theorem on the change of measures to the case of semi-martingales with jumps},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {279--294},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a5/}
}
TY - JOUR AU - L. I. Gal'čuk TI - An extension of the Girsanov theorem on the change of measures to the case of semi-martingales with jumps JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 279 EP - 294 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a5/ LA - ru ID - TVP_1977_22_2_a5 ER -
L. I. Gal'čuk. An extension of the Girsanov theorem on the change of measures to the case of semi-martingales with jumps. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 279-294. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a5/