On dual Markov processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 264-278
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Under certain assumptions, a right continuous Markov process has a dual one with respect to some measure, this dual being left continuous [11]. Theorem 1 shows that, in the same case, it is possible, by simple transformations, to guarantee the right continuity of the dual process.
Theorem 2 deals with conditions under which the killing of dual processes at the hitting time of a given set again results in dual processes. From Theorem 2 we get Theorem 3 containing the fundamental Hunt identity.
			
            
            
            
          
        
      @article{TVP_1977_22_2_a4,
     author = {M. G. \v{S}ur},
     title = {On dual {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {264--278},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a4/}
}
                      
                      
                    M. G. Šur. On dual Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 264-278. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a4/
