On dual Markov processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 264-278

Voir la notice de l'article provenant de la source Math-Net.Ru

Under certain assumptions, a right continuous Markov process has a dual one with respect to some measure, this dual being left continuous [11]. Theorem 1 shows that, in the same case, it is possible, by simple transformations, to guarantee the right continuity of the dual process. Theorem 2 deals with conditions under which the killing of dual processes at the hitting time of a given set again results in dual processes. From Theorem 2 we get Theorem 3 containing the fundamental Hunt identity.
@article{TVP_1977_22_2_a4,
     author = {M. G. \v{S}ur},
     title = {On dual {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {264--278},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a4/}
}
TY  - JOUR
AU  - M. G. Šur
TI  - On dual Markov processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 264
EP  - 278
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a4/
LA  - ru
ID  - TVP_1977_22_2_a4
ER  - 
%0 Journal Article
%A M. G. Šur
%T On dual Markov processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 264-278
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a4/
%G ru
%F TVP_1977_22_2_a4
M. G. Šur. On dual Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 264-278. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a4/