Some inequalities for the distributions of sums of independent random variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 254-263
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_i$, $i=\overline{1,n}$ be independent random variables, 
$$
S_n=\sum_1^nX_i,\ F_i(x)=\mathbf P(X_i),\ \overline{\alpha}_k=\int_0^\infty x^t\,dF_k(x).
$$ Upper estimates are given for $\mathbf P(S_n\ge x)$ in terms of the sum
$$
\sum_{1\le i_1\le\dots\le i_p\le n}\overline{\alpha}_{i_1}\dots\overline{\alpha}_{i_p}.
$$ Upper and lower estimates are obtained for $\mathbf M|S_n|^t$, $t>2$.
			
            
            
            
          
        
      @article{TVP_1977_22_2_a3,
     author = {S. V. Nagaev and I. F. Pinelis},
     title = {Some inequalities for the distributions of sums of independent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {254--263},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a3/}
}
                      
                      
                    TY - JOUR AU - S. V. Nagaev AU - I. F. Pinelis TI - Some inequalities for the distributions of sums of independent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 254 EP - 263 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a3/ LA - ru ID - TVP_1977_22_2_a3 ER -
S. V. Nagaev; I. F. Pinelis. Some inequalities for the distributions of sums of independent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 254-263. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a3/
