On the strong mixing property for linear sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 421-423
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $Z_i$, $i=0,\pm 1,\pm 2,\dots$, be independent random variables and $g_i\in R^1$, $i=0,1,2,\dots$. In the note, sufficient conditions are obtained for the sequence $\displaystyle X_j=\sum_{i=0}^{\infty}g_iZ_{j-i}$ to possess the strong mixing property.
@article{TVP_1977_22_2_a21,
author = {V. V. Gorodeckiǐ},
title = {On the strong mixing property for linear sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {421--423},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a21/}
}
V. V. Gorodeckiǐ. On the strong mixing property for linear sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 421-423. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a21/