On the strong mixing property for linear sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 421-423

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Z_i$, $i=0,\pm 1,\pm 2,\dots$, be independent random variables and $g_i\in R^1$, $i=0,1,2,\dots$. In the note, sufficient conditions are obtained for the sequence $\displaystyle X_j=\sum_{i=0}^{\infty}g_iZ_{j-i}$ to possess the strong mixing property.
@article{TVP_1977_22_2_a21,
     author = {V. V. Gorodeckiǐ},
     title = {On the strong mixing property for linear sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {421--423},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a21/}
}
TY  - JOUR
AU  - V. V. Gorodeckiǐ
TI  - On the strong mixing property for linear sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 421
EP  - 423
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a21/
LA  - ru
ID  - TVP_1977_22_2_a21
ER  - 
%0 Journal Article
%A V. V. Gorodeckiǐ
%T On the strong mixing property for linear sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 421-423
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a21/
%G ru
%F TVP_1977_22_2_a21
V. V. Gorodeckiǐ. On the strong mixing property for linear sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 421-423. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a21/