On the $\omega^2$ statistic distribution in the multidimensional case
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 415-420

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper gives a method for computing eigenvalues of the integral operator with the kernel $$ K(s,t)=\prod_{i=1}^m\min(s_i,t_i)-\prod_{i=1}^ms_it_i $$ which is used to find the $\omega^2$-distribution in the multidimensional case. Tables for the cumulative distribution function and percentage points are given for $m=3$.
@article{TVP_1977_22_2_a20,
     author = {E. N. Krivyakova and G. V. Martynov and Yu. N. Tyurin},
     title = {On the $\omega^2$ statistic distribution in the multidimensional case},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {415--420},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/}
}
TY  - JOUR
AU  - E. N. Krivyakova
AU  - G. V. Martynov
AU  - Yu. N. Tyurin
TI  - On the $\omega^2$ statistic distribution in the multidimensional case
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 415
EP  - 420
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/
LA  - ru
ID  - TVP_1977_22_2_a20
ER  - 
%0 Journal Article
%A E. N. Krivyakova
%A G. V. Martynov
%A Yu. N. Tyurin
%T On the $\omega^2$ statistic distribution in the multidimensional case
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 415-420
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/
%G ru
%F TVP_1977_22_2_a20
E. N. Krivyakova; G. V. Martynov; Yu. N. Tyurin. On the $\omega^2$ statistic distribution in the multidimensional case. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 415-420. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/