On the $\omega^2$ statistic distribution in the multidimensional case
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 415-420
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper gives a method for computing eigenvalues of the integral operator with the kernel $$ K(s,t)=\prod_{i=1}^m\min(s_i,t_i)-\prod_{i=1}^ms_it_i $$ which is used to find the $\omega^2$-distribution in the multidimensional case. Tables for the cumulative distribution function and percentage points are given for $m=3$.
@article{TVP_1977_22_2_a20,
author = {E. N. Krivyakova and G. V. Martynov and Yu. N. Tyurin},
title = {On the $\omega^2$ statistic distribution in the multidimensional case},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {415--420},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/}
}
TY - JOUR AU - E. N. Krivyakova AU - G. V. Martynov AU - Yu. N. Tyurin TI - On the $\omega^2$ statistic distribution in the multidimensional case JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 415 EP - 420 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/ LA - ru ID - TVP_1977_22_2_a20 ER -
E. N. Krivyakova; G. V. Martynov; Yu. N. Tyurin. On the $\omega^2$ statistic distribution in the multidimensional case. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 415-420. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a20/