On the error of the Gaussian approximation for convolutions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 242-253
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $F_n$ be the distribution in $R^k$ of the sum of independent random vectors $\xi_1,\dots,\xi_n$, and $G_n$ be the normal distribution with the same means and соvariances as $F_n$. 
If $\mathfrak L_{\Pi}$ is the Lévy–Prohorov distance between distributions in $R^k$ defined by the Euclidean norm in $R^k$, Theorem 1 yields the estimate
\begin{gather*}
\mathfrak L_{\Pi}(F_n,G_n)\le ck^{1/4}\mu_1^{1/4}[|\ln\mu_1|^{1/2}+(\ln k)^{1/2}],
\\
\mu_1=\mathbf E|\xi_1-\mathbf E \xi_1|^3+\dots+\mathbf E|\xi_n-\mathbf E \xi_n|^3,
\end{gather*}
with $c$ being an absolute constant.
A similar bound holds when $\mathfrak L_{\Pi}$ is defined using a non-Hilbert but sufficiently smooth norm in $R^k$ (Theorem 2).
Finite-dimensional bounds are used in Section 2 to obtain coarse power convergence rate in the multidimensional invariance principle for a random walk.
			
            
            
            
          
        
      @article{TVP_1977_22_2_a2,
     author = {V. V. Yurinskiǐ},
     title = {On the error of the {Gaussian} approximation for convolutions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {242--253},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a2/}
}
                      
                      
                    V. V. Yurinskiǐ. On the error of the Gaussian approximation for convolutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 242-253. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a2/
