On the error of the Gaussian approximation for convolutions
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 242-253

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_n$ be the distribution in $R^k$ of the sum of independent random vectors $\xi_1,\dots,\xi_n$, and $G_n$ be the normal distribution with the same means and соvariances as $F_n$. If $\mathfrak L_{\Pi}$ is the Lévy–Prohorov distance between distributions in $R^k$ defined by the Euclidean norm in $R^k$, Theorem 1 yields the estimate \begin{gather*} \mathfrak L_{\Pi}(F_n,G_n)\le ck^{1/4}\mu_1^{1/4}[|\ln\mu_1|^{1/2}+(\ln k)^{1/2}], \\ \mu_1=\mathbf E|\xi_1-\mathbf E \xi_1|^3+\dots+\mathbf E|\xi_n-\mathbf E \xi_n|^3, \end{gather*} with $c$ being an absolute constant. A similar bound holds when $\mathfrak L_{\Pi}$ is defined using a non-Hilbert but sufficiently smooth norm in $R^k$ (Theorem 2). Finite-dimensional bounds are used in Section 2 to obtain coarse power convergence rate in the multidimensional invariance principle for a random walk.
@article{TVP_1977_22_2_a2,
     author = {V. V. Yurinskiǐ},
     title = {On the error of the {Gaussian} approximation for convolutions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {242--253},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a2/}
}
TY  - JOUR
AU  - V. V. Yurinskiǐ
TI  - On the error of the Gaussian approximation for convolutions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 242
EP  - 253
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a2/
LA  - ru
ID  - TVP_1977_22_2_a2
ER  - 
%0 Journal Article
%A V. V. Yurinskiǐ
%T On the error of the Gaussian approximation for convolutions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 242-253
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a2/
%G ru
%F TVP_1977_22_2_a2
V. V. Yurinskiǐ. On the error of the Gaussian approximation for convolutions. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 242-253. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a2/