On the power of the chi-square test with increasing number of class-intervals
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 375-379
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with testing a simple hypothesis against a sequence of simple alternatives converging to the hypothesis at rate $n^{-1/z}$, $n$ being the sample size. It is known that the power of the chi-square test with $r$ equiprobable class-intervals tends to the test size if $r\to\infty$ as $n\to\infty$. Here it is shown that, in case of not equiprobable class-intervals, the power tends to a certain nondegenerate limit as $r/n\to c>0$ and, if $r/n\to\infty$, then the test behaves like a locally most powerful test against a specific sequence of alternatives depending on the behaviour of the class-intervals probabilities.
@article{TVP_1977_22_2_a12,
author = {A. A. Borovkov},
title = {On the power of the chi-square test with increasing number of class-intervals},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {375--379},
year = {1977},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a12/}
}
A. A. Borovkov. On the power of the chi-square test with increasing number of class-intervals. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 375-379. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a12/