Markov controlled models with countable state space and continuous time
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 222-241

Voir la notice de l'article provenant de la source Math-Net.Ru

Following general lines of [10], we expand the Blackwell–Strauch dynamic programming theory, which takes into account policies depending on the whole past, to continuous time Markov decision processes with countable state and Borel action spaces. Nonhomogeneous processes with finite and infinite horizon and non-randomized policies are treated. An optimality equation is obtained for negative models and models with value not equal to $-\infty$. The existence of Markovian $\varepsilon$-optimal policies is proved for models with bounded value and small positive share of far future. The semicontinuous case is also considered.
@article{TVP_1977_22_2_a1,
     author = {A. A. Yu\v{s}kevi\v{c}},
     title = {Markov controlled models with countable state space and continuous time},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {222--241},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a1/}
}
TY  - JOUR
AU  - A. A. Yuškevič
TI  - Markov controlled models with countable state space and continuous time
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 222
EP  - 241
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a1/
LA  - ru
ID  - TVP_1977_22_2_a1
ER  - 
%0 Journal Article
%A A. A. Yuškevič
%T Markov controlled models with countable state space and continuous time
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 222-241
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a1/
%G ru
%F TVP_1977_22_2_a1
A. A. Yuškevič. Markov controlled models with countable state space and continuous time. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 2, pp. 222-241. http://geodesic.mathdoc.fr/item/TVP_1977_22_2_a1/