On the theory of controlled Markov processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 55-71
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\Xi^d=(\xi_t,\mathscr F_t,\mathbf P_x^d)_{t\in\mathscr N}$ be a family of Markov processes on $(\Omega,\mathscr F)$ with values in$(X,\mathscr X)$, $d\in D$. Any sequence
$$
\delta=\{d_0(x_0),d_1(x_0,x_1),\dots,d_k(x_0,\dots,x_k),\dots\},
$$
where $d_k:(X,\mathscr X)^{k+1}\to(D,\mathscr D)$, $\mathscr D$ is a $\sigma$-algebra in $D$, is called a control policy. For each control policy $\delta$, a controlled Markov process $\Xi^{\delta}=(\xi_t,\mathscr F_t,\mathbf P_x^{\delta})_{t\in\mathscr N}$ is constructed.
Let $\overline{\mathfrak M}$ be the set of stopping times with respect to $\{\mathscr F_t,t\in\mathscr N\bigcup\{+\infty\}\}$, $\Delta$ be the set of control policies,
\begin{gather*}
\overline{\Sigma}=\overline{\mathfrak M}\times\Delta;\ \Sigma=\{[\tau,\delta]\in\overline{\Sigma}:\mathbf P_x^{\delta}\{\tau\infty\}=1\},\\
\Sigma_n=\{[\tau,\delta]\in\Sigma:\mathbf P_x^{\delta}\{\tau\le n\}=1\}.
\end{gather*}
Let $g(x)$ be a real $\overline{\mathscr X}$-measurable function, $g^-(x)\le k\infty$, and
\begin{gather*}
\overline s(x)=\sup_{[\tau,\delta]\in\overline{\Sigma}}\mathbf M_x^{\delta}g(\xi_{\tau}),\qquad
g(\xi_{\infty})=\varlimsup g(\xi_n);\\
s(x)=\sup_{[\tau,\delta]\in\Sigma}\mathbf M_x^{\delta}g(\xi_{\tau}),\\
s_n(x)=\sup_{[\tau,\delta]\in\Sigma_n}\mathbf M_x^{\delta}g(\xi_{\tau}).
\end{gather*} We show that the gain functions $\xi(x)$ and $s(x)$ are equal and $s(x)$ is the least excessive majorant of $g(x)$. For each $\varepsilon>0$ and a probability measure $\mu$ on $(X,\mathscr X)$, $(\mu,\varepsilon,s)$-
and $(\mu,\varepsilon,s_n)$-optimal strategies $[\tau,\delta]$ are constructed. We also show that $s_n(x)\to s(x)$ as $n\to\infty$.
			
            
            
            
          
        
      @article{TVP_1977_22_1_a4,
     author = {A. Barbaro\v{s}ie},
     title = {On the theory of controlled {Markov} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {55--71},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a4/}
}
                      
                      
                    A. Barbarošie. On the theory of controlled Markov processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 55-71. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a4/
