On a~generalization of the best choice problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 191-194

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose we have to choose two objects from a finite set which consists of $N$ objects. Let the set be ordered by quality. Let us enumerate the objects in the order in which we observe them. After observing $a_s$ we know comparative qualities of $a_1,a_2,\dots,a_s$ but we know nothing about the quality of the remaining $N-s$ objects. While observing $a_s$ we can accept it (thus making the first choice) or reject it (then it will be impossible to return to it). We find an optimal policy which provides the greatest probability of choosing two best objects and describe its asymptotical behaviour as $N\to\infty$.
@article{TVP_1977_22_1_a22,
     author = {M. L. Nikolaev},
     title = {On a~generalization of the best choice problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {191--194},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a22/}
}
TY  - JOUR
AU  - M. L. Nikolaev
TI  - On a~generalization of the best choice problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 191
EP  - 194
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a22/
LA  - ru
ID  - TVP_1977_22_1_a22
ER  - 
%0 Journal Article
%A M. L. Nikolaev
%T On a~generalization of the best choice problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 191-194
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a22/
%G ru
%F TVP_1977_22_1_a22
M. L. Nikolaev. On a~generalization of the best choice problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 191-194. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a22/