Asymptotic behaviour of the non-extinction probability for a~critical branching process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 143-149
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Critical age-dependent branching process with $k$ types $N_1,N_2,\dots,N_k$ of particles are considered. We suppose that particles' reproduction power depends on their age. Let $z_j^i(t)$ be the number of particles of type $N_j$ at time $t$ given that at time $t=0$ there was only one particle of type $N_i$. We derive an asymptotic formula for the probability $\mathbf P\{z_1^i(t)+z_2^i(t)+\dots+z_k^i(t)>0\}$ as $t\to\infty$. The result obtained is analogous to that of Goldstein [2].
			
            
            
            
          
        
      @article{TVP_1977_22_1_a12,
     author = {V. A. Vatutin},
     title = {Asymptotic behaviour of the non-extinction probability for a~critical branching process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {143--149},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a12/}
}
                      
                      
                    TY - JOUR AU - V. A. Vatutin TI - Asymptotic behaviour of the non-extinction probability for a~critical branching process JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1977 SP - 143 EP - 149 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a12/ LA - ru ID - TVP_1977_22_1_a12 ER -
V. A. Vatutin. Asymptotic behaviour of the non-extinction probability for a~critical branching process. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 143-149. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a12/
