On a~decomposition of a~Gaussian distribution on groups
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 136-143
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X$ be a connected locally compact Abelian separable metric group. 
The following generalization of Cramer's theorem is obtained: an arbitrary Gaussian distribution $\mu$ on the group $X$ has only Gaussian divisors if and only if $X$ does not contain a subgroup isomorphic to the circle group T. 
It is also shown that any Gaussian distribution $\mu$, the support of which coincides with $X$, has a non-Gaussian divisor if and only if the group $X$ is isomorphic to a group of the form $R^p\times T$, $p\ge 0$.
			
            
            
            
          
        
      @article{TVP_1977_22_1_a11,
     author = {G. M. Fel'dman},
     title = {On a~decomposition of {a~Gaussian} distribution on groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {136--143},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a11/}
}
                      
                      
                    G. M. Fel'dman. On a~decomposition of a~Gaussian distribution on groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 136-143. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a11/
