Decomposable statistics in a~polynomial scheme.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a random vector $\nu=(\nu_1,\nu_2,\dots,\nu_N)$ have the polynomial distribution with parameters $n$; $p_1,p_2,\dots,p_N$. A random variable $\displaystyle L(\nu)=\sum_{m=1}^N f_m(\nu_m)$, where $f_1(x),f_2(x),\dots,f_N(x)$ are arbitrary given functions, is called a decomposable statistic. The paper deals with the limiting laws of the distribution of decomposable statistics as $n$, $N\to\infty$ for small samples, i. e. when $\displaystyle\max_m np_m\le c\infty$, and under some weak constraints on functions $f_m(x)$. The class of decomposable statistics includes statistic $\chi^2$, likelihood ratios, linear combinations of random variables $\mu_r$, where $\mu_r$ is the number of the coordinates of $\nu$ equal to $r$, and others.
@article{TVP_1977_22_1_a0,
     author = {Yu. I. Medvedev},
     title = {Decomposable statistics in a~polynomial {scheme.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {1977},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a0/}
}
TY  - JOUR
AU  - Yu. I. Medvedev
TI  - Decomposable statistics in a~polynomial scheme.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1977
SP  - 3
EP  - 17
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a0/
LA  - ru
ID  - TVP_1977_22_1_a0
ER  - 
%0 Journal Article
%A Yu. I. Medvedev
%T Decomposable statistics in a~polynomial scheme.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1977
%P 3-17
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a0/
%G ru
%F TVP_1977_22_1_a0
Yu. I. Medvedev. Decomposable statistics in a~polynomial scheme.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 22 (1977) no. 1, pp. 3-17. http://geodesic.mathdoc.fr/item/TVP_1977_22_1_a0/