The central limit theorem and the strong law of large numbers in $l_p\{X\}$-spaces, $1\le p+\infty$
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 802-812

Voir la notice de l'article provenant de la source Math-Net.Ru

The central limit theorem is proved for independent identically distributed random elements having strong second order moments with values in a Banach space with a Shauder basis. It is shown that, if $X$ is a $G$-space, then $l_p\{X\}$, $2\le p\infty$, is a space of the same type. The central limit theorem is also proved for the case when $1\le p\le 2$ and $X$ is a $G$-space and for $l_p\{l_s\}$-spaces where $1\le p,s\le 2$. The strong law of large numbers in these spaces is studied.
@article{TVP_1976_21_4_a8,
     author = {V. V. Kvara\v{c}heliya and Nguen Zuy Tien},
     title = {The central limit theorem and the strong law of large numbers in $l_p\{X\}$-spaces, $1\le p<+\infty$},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {802--812},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a8/}
}
TY  - JOUR
AU  - V. V. Kvaračheliya
AU  - Nguen Zuy Tien
TI  - The central limit theorem and the strong law of large numbers in $l_p\{X\}$-spaces, $1\le p<+\infty$
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 802
EP  - 812
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a8/
LA  - ru
ID  - TVP_1976_21_4_a8
ER  - 
%0 Journal Article
%A V. V. Kvaračheliya
%A Nguen Zuy Tien
%T The central limit theorem and the strong law of large numbers in $l_p\{X\}$-spaces, $1\le p<+\infty$
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 802-812
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a8/
%G ru
%F TVP_1976_21_4_a8
V. V. Kvaračheliya; Nguen Zuy Tien. The central limit theorem and the strong law of large numbers in $l_p\{X\}$-spaces, $1\le p<+\infty$. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 802-812. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a8/