On a non-parametric analogue of the information matrix
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 759-774 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of differentiable functions $\Phi(F)$ of distributions $F$, an analogue of the information matrix $I(F)$ is considered. In terms of matrix $I(F)$, bounds for risks in estimating $\Phi(F)$ are obtained; this is an extension, to the non-parametric case, of a result of J. Hajek [2]. Some examples are discussed including estimation of $\Phi(F)$ under the restriction that the values of differentiable functions $\Psi(F)$ are known.
@article{TVP_1976_21_4_a5,
     author = {Yu. A. Ko\v{s}evnik and B. Ya. Levit},
     title = {On a~non-parametric analogue of the information matrix},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {759--774},
     year = {1976},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a5/}
}
TY  - JOUR
AU  - Yu. A. Koševnik
AU  - B. Ya. Levit
TI  - On a non-parametric analogue of the information matrix
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 759
EP  - 774
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a5/
LA  - ru
ID  - TVP_1976_21_4_a5
ER  - 
%0 Journal Article
%A Yu. A. Koševnik
%A B. Ya. Levit
%T On a non-parametric analogue of the information matrix
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 759-774
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a5/
%G ru
%F TVP_1976_21_4_a5
Yu. A. Koševnik; B. Ya. Levit. On a non-parametric analogue of the information matrix. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 759-774. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a5/