Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 741-758 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem under consideration is to estimate the distance, with respect to a chosen metric $\mu$, between two linear combinations $\displaystyle X=\sum_jc_jX_j$ and $\displaystyle Y=\sum_jc_jY_j$ of independent random variables with values in a Banach space $U$. General results of this paper enable, in particular, to effectively estimate the accuracy of approximation of the distributions of normalized sums of independent random $U$-valued variables by a normal law. When choosing $\mu$ in an appropriate way, one obtains estimates quite analogous to those known in the simplest case $U=R^1$.
@article{TVP_1976_21_4_a4,
     author = {V. M. Zolotarev},
     title = {Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {741--758},
     year = {1976},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/}
}
TY  - JOUR
AU  - V. M. Zolotarev
TI  - Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 741
EP  - 758
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/
LA  - ru
ID  - TVP_1976_21_4_a4
ER  - 
%0 Journal Article
%A V. M. Zolotarev
%T Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 741-758
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/
%G ru
%F TVP_1976_21_4_a4
V. M. Zolotarev. Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 741-758. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/