Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 741-758
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem under consideration is to estimate the distance, with respect to a chosen metric $\mu$, between two linear combinations $\displaystyle X=\sum_jc_jX_j$ and $\displaystyle Y=\sum_jc_jY_j$ of independent random variables with values in a Banach space $U$. General results of this paper enable, in particular, to effectively estimate the accuracy of approximation of the distributions of normalized sums of independent random $U$-valued variables by a normal law. When choosing $\mu$ in an appropriate way, one obtains estimates quite analogous to those known in the simplest case $U=R^1$.
@article{TVP_1976_21_4_a4,
author = {V. M. Zolotarev},
title = {Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {741--758},
year = {1976},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/}
}
TY - JOUR AU - V. M. Zolotarev TI - Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1976 SP - 741 EP - 758 VL - 21 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/ LA - ru ID - TVP_1976_21_4_a4 ER -
V. M. Zolotarev. Approximation of the distribution of sums of independent variables with values in infinite-dimensional spaces. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 741-758. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a4/