Convergence of Rice and Longuet-Higgins series for a~Wong process
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 885-888

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_t$ be a Wong process, i. e. a stationary Gaussian process with zero mean and the co-variance function $$ p_t=\frac{3}{2}\exp\biggl(-\frac{|t|}{\sqrt 3}\biggr) \biggl[1-\frac{1}{3}\exp\biggl(-\frac{2}{\sqrt 3}|t|\biggr)\biggr]. $$ S. O. Rice and M. S. Longuet-Higgins used alternating series of factorial moments of the number of zeroes of $\xi_t$ for a representation of the distribution function $F_m(t)$ of the distance between the $i$ th and $(i+m+1)$th zeroes of $\xi_t$. In the paper, the problem of convergence of these series is studied.
@article{TVP_1976_21_4_a21,
     author = {R. N. Miro\v{s}in},
     title = {Convergence of {Rice} and {Longuet-Higgins} series for {a~Wong} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {885--888},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a21/}
}
TY  - JOUR
AU  - R. N. Mirošin
TI  - Convergence of Rice and Longuet-Higgins series for a~Wong process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 885
EP  - 888
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a21/
LA  - ru
ID  - TVP_1976_21_4_a21
ER  - 
%0 Journal Article
%A R. N. Mirošin
%T Convergence of Rice and Longuet-Higgins series for a~Wong process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 885-888
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a21/
%G ru
%F TVP_1976_21_4_a21
R. N. Mirošin. Convergence of Rice and Longuet-Higgins series for a~Wong process. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 885-888. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a21/