On a~sequential test
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 854-857

Voir la notice de l'article provenant de la source Math-Net.Ru

Let, in the scheme of independent and identical trials with $N$ outcomes, $\nu_m(k)$ be the number of trials after which $k$ outcomes have been realized for the first time more than $m$ times each. We study $\nu_m(k)$ (as $N\to\infty$) as a random function of parameter $k$ and construct a multidimensional analogue of the statistical test of [1].
@article{TVP_1976_21_4_a14,
     author = {T. V. Ivanova and G. I. Iv\v{c}enko},
     title = {On a~sequential test},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {854--857},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a14/}
}
TY  - JOUR
AU  - T. V. Ivanova
AU  - G. I. Ivčenko
TI  - On a~sequential test
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 854
EP  - 857
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a14/
LA  - ru
ID  - TVP_1976_21_4_a14
ER  - 
%0 Journal Article
%A T. V. Ivanova
%A G. I. Ivčenko
%T On a~sequential test
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 854-857
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a14/
%G ru
%F TVP_1976_21_4_a14
T. V. Ivanova; G. I. Ivčenko. On a~sequential test. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 854-857. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a14/