Moment asymptotics for branching processes close to critical ones
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 845-853
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider an age-dependent branching process with $n$ different types of particles. Let $\mu_j^i(t)$ be the number of particles of type $j$ at time $t$ if the process started from a single particle of type $i$. Let $A$ be the matrix of the process, and let $R$ be the Perron eigenvalue of $A$. We obtain an asymptotics of $A_j^i(t)=\mathbf M\mu_j^i(t)$ and $B_{jk}^i(t)=\mathbf M\mu_j^i(t)(\mu_k^i(t)-\delta_j^k)$ as $t\to\infty$, $R\to 1$ in a compact matrix class $\mathfrak A=\{A\}$.
@article{TVP_1976_21_4_a13,
author = {{\CYRO}. V. V'yugin},
title = {Moment asymptotics for branching processes close to critical ones},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {845--853},
year = {1976},
volume = {21},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a13/}
}
О. V. V'yugin. Moment asymptotics for branching processes close to critical ones. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 845-853. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a13/