A formula for wanderings of a regular Markov process
Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 839-845 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $(z_t,\mathbf P)$ be a regular Markov process on the time interval $T=(-\infty,\infty)$ with sample space $\Omega$ and state space $Z_t$ at time $t$. Let $\Gamma$ be a measurable subset of $\displaystyle Z=\bigcup_t Z_t$. Assume that $M(\omega)=\{t\colon z_t(\omega)\in\Gamma\}$ is closed a. s. $\mathbf P$. The complement of $M(\omega)$ is a countable union of open intervals $(\gamma,\delta)$. The collections of paths $w_{\delta}^{\gamma}=z_t(\omega)$ ($t\in(\gamma,\delta)$; the birth time of $w_{\delta}^{\gamma}$ is $\gamma$ and the death time is $\delta$) are called wanderings of $z_t$ in $Z\setminus\Gamma$. Let $W$ be the set of all paths in $Z\setminus\Gamma$ defined on all open time intervals. Let $f(t,\omega,w)$ be a function on $T\times\Omega\times W$. Denote by $S_f$ the sum $\sum f(\gamma,\omega,w_{\delta}^{\gamma})$ taken over all the wanderings $w_{\delta}^{\gamma}$. We calculate the expectation of $S_f$ (formula (2)) under some special assumptions of measurability of $f(t,\omega,w)$.
@article{TVP_1976_21_4_a12,
     author = {M. I. Taksar},
     title = {A~formula for wanderings of a~regular {Markov} process},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {839--845},
     year = {1976},
     volume = {21},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a12/}
}
TY  - JOUR
AU  - M. I. Taksar
TI  - A formula for wanderings of a regular Markov process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1976
SP  - 839
EP  - 845
VL  - 21
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a12/
LA  - ru
ID  - TVP_1976_21_4_a12
ER  - 
%0 Journal Article
%A M. I. Taksar
%T A formula for wanderings of a regular Markov process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1976
%P 839-845
%V 21
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a12/
%G ru
%F TVP_1976_21_4_a12
M. I. Taksar. A formula for wanderings of a regular Markov process. Teoriâ veroâtnostej i ee primeneniâ, Tome 21 (1976) no. 4, pp. 839-845. http://geodesic.mathdoc.fr/item/TVP_1976_21_4_a12/